

Sovryn Security Review

by Pessimistic

This report is public.

Published: October 7, 2020

Blockchain Security Analysis by Pessimistic 1

Abstract ..2

Disclaimer ..2

Summary ..2

General recommendations ...2

Procedure...3

Project overview ...4

Project description ..4

Manual analysis..5

Critical issues..5

New contract setup ..5

Medium severity issues ...5

Low severity issues ...6

Code style ...6

https://pessimistic.io/

Blockchain Security Analysis by Pessimistic 2

Abstract

In this report, we consider the quality of four pull requests for smart contracts of the Sovryn

project. Our task is to find and describe security issues in these requests.

Disclaimer

The audit does not give any warranties on the security of the code. One audit cannot be

considered enough. We always recommend proceeding with several independent audits and

a public bug bounty program to ensure the security of smart contracts. Besides, security

audit is not an investment advice.

Summary

In this report, we considered the security of four pull requests for smart contracts of Sovryn

project without reviewing the project itself. We performed our audit according to the

procedure described below.

The initial audit of 4 pull requests showed a vulnerability (critical issue) and a few code style

issues.

In the latest pull requests, the vulnerability and two code style issues were fixed.

However, the project includes contracts of enormous size, up to a point where it causes out

of gas and stack too deep issues. This affects how new changes are implemented,

complicates development, and creates a long-term risk for the project.

General recommendations
We recommend refactoring the code. All large smart contracts should be split into smaller

parts, their logic should be simple and transparent. We also recommend using linters and

static code analyzers

https://pessimistic.io/
https://www.sovryn.app/
https://www.sovryn.app/

Blockchain Security Analysis by Pessimistic 3

Procedure

In our audit, we consider the following crucial features of the code:

1. Whether the code is secure.

2. Whether the code meets best practices.

We perform our audit according to the following procedure:

• Manual audit

o We manually analyze code base from the scope for security vulnerabilities.

• Report

o We reflect all the gathered information in the report.

https://pessimistic.io/

Blockchain Security Analysis by Pessimistic 4

Project overview

Project description

In our analysis we consider smart contracts from two GitHub repositories of Sovryn project:

• Sovryn-smart-contracts

• oracle-base-amm

The scope of the audit included 4 pull requests. Initial repositories were not audited:

• https://github.com/DistributedCollective/Sovryn-smart-contracts/pull/28

• https://github.com/DistributedCollective/Sovryn-smart-contracts/pull/30

• https://github.com/DistributedCollective/Sovryn-smart-contracts/pull/42

• https://github.com/DistributedCollective/oracle-based-amm/pull/1

Latest pull requests

After initial audit, the developers applied fixes and made new pull requests:

• https://github.com/DistributedCollective/Sovryn-smart-contracts/pull/48

• https://github.com/DistributedCollective/oracle-based-amm/pull/8

https://pessimistic.io/
https://github.com/DistributedCollective/
https://www.sovryn.app/
https://github.com/DistributedCollective/Sovryn-smart-contracts
https://github.com/DistributedCollective/oracle-based-amm
https://github.com/DistributedCollective/Sovryn-smart-contracts/pull/28
https://github.com/DistributedCollective/Sovryn-smart-contracts/pull/30
https://github.com/DistributedCollective/Sovryn-smart-contracts/pull/42
https://github.com/DistributedCollective/oracle-based-amm/pull/1
https://github.com/DistributedCollective/Sovryn-smart-contracts/pull/48
https://github.com/DistributedCollective/oracle-based-amm/pull/8

Blockchain Security Analysis by Pessimistic 5

Manual analysis

Four pull requests were manually analyzed, their logic was checked. Here were describe all

the issues found.

Critical issues

Critical issues seriously endanger smart contracts security. We highly recommend fixing

them.

New contract setup (fixed)

In oracle-based-amm repository, pull request 1, there are two functions for new contract

deployment in ConverterRegisry contract:

• newConverter() function that performs the deployment.

• setupConverter() function that performs the setup newly deployed contract.

setupConverter() function can be called only once for newly created contract. It sets

msg.sender as an owner of the contract. However, this function can be called by anyone

and is vulnerable to the front-running attack. Thus, anyone can become an owner of the

deployed contract.

The issue has been fixed in pull request 8.

Medium severity issues

Medium issues can influence project operation in current implementation. We highly

recommend addressing them.

The audit showed no issues of medium severity.

https://pessimistic.io/
https://github.com/DistributedCollective/oracle-based-amm/pull/8

Blockchain Security Analysis by Pessimistic 6

Low severity issues

Low severity issues can influence project operation in future versions of code. We

recommend taking them into account.

Code style

In pull request 30 for Sovryn-smart-contracts repository, there are two code style issues in

modules/LoanClosings.sol:

• Time intervals are set in seconds:

.add(86400) or (backInterestTime >= 2628000).

Consider using interval 1 days and declaring a constant uint constant

internal MONTH = 365 days / 12; instead to improve code readability.

The issue has been fixed in pull request 48.

• At line 386, both sides of assignment use destTokenAmountReceived:

(destTokenAmountReceived , ,) = _swapBackExcess(

 loanLocal,

 loanParamsLocal,

 destTokenAmountReceived - interestAmountRequired, //amount to be swapped

 loanDataBytes);

Consider declaring a new variable instead.

Comment from developers: This change would lead to a stack too deep error. This

function will need to be refactored along with most of the code and we're planning to

do it step by step in the coming weeks.

The following issue was found during general overview of the project. It is located out of the

scope of the audit. However, to bring more use to the developers, we included the issue into

the audit report:

• In contracts/swaps/SwapsUser.sol of Sovryn-smart-contracts repository, lines

127–157, there are 23 lines of commented code. We recommend removing

commented code and replace if-else statement with require() to reduce nesting

and thus improve code readability.

The issue has been fixed in pull request 48.

https://pessimistic.io/
https://github.com/DistributedCollective/Sovryn-smart-contracts/pull/30
https://github.com/DistributedCollective/Sovryn-smart-contracts
https://github.com/DistributedCollective/Sovryn-smart-contracts/pull/48
https://github.com/DistributedCollective/Sovryn-smart-contracts/pull/48

Blockchain Security Analysis by Pessimistic 7

This analysis was performed by Pessimistic:

Evgeny Marchenko, Senior Security Engineer

Boris Nikashin, Analyst

Alexander Seleznev, Founder

October 7, 2020

https://pessimistic.io/

