

Smart Contract
Source Code Audit

Sovryn
Prepared for Sovryn • December 2020

v201218

1. Table Of Contents
1. Table Of Contents

2. Executive Summary

3. Introduction

4. Assessment
Phase 1: Review of all changes introduced to upstream projects bZx and Bancor
Phase 3: General review of the lending, trading and borrowing processes

5. Conclusions and Recommendations

6. Summary of Findings

7. Remediations

8. Findings
SVN-001 - ​Price feed oracle fake timestamp
SVN-002 - ​WRBTC ERC20 approve front running
SVN-003 - ​internalSwap function name is misleading
SVN-004 - ​Infinite transfer allowance
SVN-010 - ​Missing or numeric non descriptive error messages
SVN-011 - ​Transaction size and slippage limits not enforced for external swaps
SVN-012 - ​Leftover code from debugging
SVN-013 - ​Function _totalDeposit doesn’t revert when the precision is 0

9. Disclaimer

© 2020 Coinspect 1

2. Executive Summary

In October 2020, ​Sovryn ​engaged ​Coinspect to perform a source code review of their new
decentralized Bitcoin trading and lending platform. The objective of the audit was to evaluate
the security of their smart contracts.

The code reviewed was found to be clear, well written, and properly documented. The
modifications performed to the forked projects did not introduce any vulnerabilities. However,
Coinspect observed the oracle integration implementation weakens the system security and
could be abused by attackers to manipulate the price feeds.

Moreover, the protocol is dependent on third party oracle providers, whose security should
be evaluated and taken into consideration when deciding to use the Sorvyn platform. The
oracles are trusted by Sovryn and are a single point of failure for the whole system.

The following issues were identified during the assessment:

During December 2020 Coinspect verified the fixes developed by the Sovryn team were
correct. Detailed information regarding these fixes and the current status for each finding can
be found in ​7. Remediations​.

© 2020 Coinspect 2

High Risk Medium Risk Low Risk Informational

1 0 4 3

https://sovryn.app/
https://coinspect.com/

3. Introduction

Sovryn’s goal is to enable lending, borrowing and margin trading in the RSK blockchain.

The project architecture is composed of the following components:

1. Core protocol: ​The Core protocol is a ​bZx - A Protocol For Tokenized Margin
Trading and Lending​ protocol fork. The most important change introduced by Sovryn
is the switch to using their ​oracle-based AMM ​instead of Kyber. Also, some protocol
parameters were modified, such as: rollover rewards and minimum utilization rate on
interest calculation. This component can be found in
https://github.com/DistributedCollective/Sovryn-smart-contracts​.

2. Oracle-based Automated Market Maker: ​This component is a ​Bancor Network
liquidity protocol fork. The most important modification introduced by Sovryn is the
switch from Chainlink oracles to the Money on Chain ones. This component is
located in
https://github.com/DistributedCollective/oracle-based-amm

3. Watcher: ​this off-chain component is responsible for the ​liquidation and rollover of
open positions. It reads all open positions from the Sovryn smart contracts and
continuously monitors for changes, then triggers transaction submissions when
appropriate. ​This component can be found in
https://github.com/DistributedCollective/Sovryn-Watcher/tree/audit-coinspect

The whole engagement was structured in phases:

1. Phase 1​: review of all changes introduced to upstream projects bZx and Bancor.
2. Phase 2​: review of the off-chain Watcher component.
3. Phase 3​: review of the lending, borrowing and trading flows.

This report documents phases 1 and 3 of the audit.

The audit started on October 27th and was conducted on the following Git repositories:

1. https://github.com/DistributedCollective/Sovryn-smart-contracts​ as of commit
86008054558bd7ce02e6b3b0547c681b62ecd4fc​ of ​October 26th.

2. https://github.com/DistributedCollective/oracle-based-amm​ as of commit
8b6504406b89ad24bf4e0f5ff97037bf798b59c8​ of ​October 9th.

The scope of the audit’s ​Phase 1​ was limited to the following pull requests as requested by Sovryn:

● https://github.com/DistributedCollective/Sovryn-smart-contracts/pull/12
● https://github.com/DistributedCollective/Sovryn-smart-contracts/pull/13
● https://github.com/DistributedCollective/Sovryn-smart-contracts/pull/24
● https://github.com/DistributedCollective/Sovryn-smart-contracts/pull/28
● https://github.com/DistributedCollective/Sovryn-smart-contracts/pull/30
● https://github.com/DistributedCollective/Sovryn-smart-contracts/pull/31
● https://github.com/DistributedCollective/Sovryn-smart-contracts/pull/34
● https://github.com/DistributedCollective/Sovryn-smart-contracts/pull/35
● https://github.com/DistributedCollective/Sovryn-smart-contracts/pull/42
● https://github.com/DistributedCollective/Sovryn-smart-contracts/pull/44
● https://github.com/DistributedCollective/Sovryn-smart-contracts/pull/52
● https://github.com/DistributedCollective/oracle-based-amm/pull/1
● https://github.com/DistributedCollective/oracle-based-amm/pull/4
● https://github.com/DistributedCollective/oracle-based-amm/pull/8
● https://github.com/DistributedCollective/oracle-based-amm/pull/10

© 2020 Coinspect 3

https://bzx.network/
https://bzx.network/
https://github.com/DistributedCollective/Sovryn-smart-contracts
https://bancor.network/
https://github.com/DistributedCollective/oracle-based-amm
https://github.com/DistributedCollective/Sovryn-Watcher/tree/audit-coinspect
https://github.com/DistributedCollective/Sovryn-smart-contracts
https://github.com/DistributedCollective/orac
https://github.com/DistributedCollective/Sovryn-smart-contracts/pull/12
https://github.com/DistributedCollective/Sovryn-smart-contracts/pull/13
https://github.com/DistributedCollective/Sovryn-smart-contracts/pull/24
https://github.com/DistributedCollective/Sovryn-smart-contracts/pull/28
https://github.com/DistributedCollective/Sovryn-smart-contracts/pull/30
https://github.com/DistributedCollective/Sovryn-smart-contracts/pull/31
https://github.com/DistributedCollective/Sovryn-smart-contracts/pull/34
https://github.com/DistributedCollective/Sovryn-smart-contracts/pull/35
https://github.com/DistributedCollective/Sovryn-smart-contracts/pull/42
https://github.com/DistributedCollective/Sovryn-smart-contracts/pull/44
https://github.com/DistributedCollective/Sovryn-smart-contracts/pull/52
https://github.com/DistributedCollective/oracle-based-amm/pull/1
https://github.com/DistributedCollective/oracle-based-amm/pull/4
https://github.com/DistributedCollective/oracle-based-amm/pull/8
https://github.com/DistributedCollective/oracle-based-amm/pull/10

Neither the upstream projects’ security nor the Money on Chain oracle infrastructure
were evaluated during this audit.

© 2020 Coinspect 4

4. Assessment

Phase 1: Review of all changes introduced to upstream projects bZx and Bancor

The following list including all modifications introduced by Sovryn to the forked repositories
was provided by the team and were reviewed during this phase of the engagement:

a. Sovryn Protocol​:
1. Replaced the Kyber connector with a connector to Sovryn Swap
2. Use MoC as oracle for the price feed instead of Chainlink / Kyber
3. Disabled flash loans
4. LoanId creation refactoring
5. Removal of hard coded addresses
6. Changed the rollover reward
7. Lowered the minimum utilization rate on interest calculation
8. Introduced a multisig owner

b. Sovryn Swap​:

9. Split up the factory function which deploys the liquidity pool v2 converter
10. Use MoC as oracle instead of Chainlink

Additionally, the new wrapped ​RBTC and the ​RBTCWrapperProxy contracts were added
during the audit and were reviewed as per the client’s request.

The following sections explore each of these code modifications, and provide a brief
description and audit notes for each of them.

1. Replaced the Kyber connector with a connector to Sovryn Swap

This is the project’s biggest set of changes.

Sovryn created a new connector contract, which connects to Sovryn’s oracle-based AMM
and replaces the existing Kyber swap connector.

The new ​SwapsImplSovrynSwap​ contract implements the ​ISwapsImpl​ interface and is
responsible for token swapping, these are its most relevant characteristics:

1. Uses OpenZeppelin’s ​SafeERC20​ for token transfers.
2. The source token estimation was improved to account for rounding in the AMM.
3. Source code documentation was improved.
4. It keeps a reference to the Sovryn Swap Network contract, only the connector

contract owner is allowed to modify it.
5. Relies on the Sovryn Swap Network to perform token conversions and calculate

exchange rates.
6. Bubbling of errors from Sovryn Swap network is allowed (this differs from the Kyber

connector implementation which does not allow it)
7. If the ​returnToSenderAddress​ parameter is not the protocol itself, any source token

remaining after the swap are sent back to this address

Because the oracle-based AMM does not have the option to pass a maximum amount of
destination tokens, the rollover function in ​LoanClosings​ was adapted. After the interest

© 2020 Coinspect 5

was swapped, the excess gets swapped back in the new function ​_swapBackExcess​. Sovryn
optimized the ​LoanClosings​ contract to swap back excess (from the rollover and the
borrower scenarios) only if the amount is big enough to justify the swap transaction, usually
the excess is a fraction of a cent and not worth the extra gas cost. The hard coded 0.00001
RBTC is used as the threshold value for borrower excess. The new function
worthTheTransfer​ is responsible for obtaining the exchange rate from the priceFeeds
contract and comparing the resulting value with the threshold. In the
_coverPrincipalWithSwap​ scenario, when the excess is under the threshold limit, it is
always sent back to the lender. But in the ​_rollover​ scenario, excess under threshold is
kept as a protocol lending fee.

Coinspect reviewed the following pull requests:

● https://github.com/DistributedCollective/Sovryn-smart-contracts/pull/30
● https://github.com/DistributedCollective/Sovryn-smart-contracts/pull/52

2. Use MoC as oracle for the price feed instead of Chainlink / Kyber

The following modifications were introduced:
1. Added a price feed contract ​PriceFeedsMoC which connects to the MoC oracle:

https://github.com/money-on-chain/Amphiraos-Oracle/blob/master/contracts/mediani
zer/medianizer.sol​, replacing Kyber and Chainlink as price feed sources.

2. The value retrieved from the price feed contract ​latestAnswer function is ​uint256
instead of ​int256​.

3. Added a base token parameter to the price feed constructor.
4. Removed gas price retrieval function ​getFastGasPrice​.

Coinspect observed that in the current implementation, the feed contract lacks the ability to
know when was the last time the oracle was updated because the MoC oracle does not
provide that information back to the consumer contract. This issue is fully described in ​Price
feed oracle fake timestamp​.

Coinspect verified only the ​PriceFeedMoC​ contract owner can set the MoC oracle contract
address.

Coinspect reviewed the following pull requests:

1. https://github.com/DistributedCollective/Sovryn-smart-contracts/pull/28
2. https://github.com/DistributedCollective/Sovryn-smart-contracts/pull/42

3. Disabled flash loans

Sovryn commented out the function ​flashBorrow in order to disable the flash loan
functionality for the MVP release. Also, the ​reentrancyGuard modifier was re-enabled for
the ​marginTrade and ​borrow functions. This modifier will have to be removed again once
the flash loans are enabled.

It is worth noting that even if flash loans are disabled in the Sovryn platform, they could still
be offered by another platform enabling attackers to utilize them in order to exploit Sovryn.

This change was introduced in the following pull request:

● https://github.com/DistributedCollective/Sovryn-smart-contracts/pull/13

© 2020 Coinspect 6

https://github.com/DistributedCollective/Sovryn-smart-contracts/pull/30
https://github.com/DistributedCollective/Sovryn-smart-contracts/pull/52
https://github.com/money-on-chain/Amphiraos-Oracle/blob/master/contracts/medianizer/medianizer.sol
https://github.com/money-on-chain/Amphiraos-Oracle/blob/master/contracts/medianizer/medianizer.sol
https://github.com/DistributedCollective/Sovryn-smart-contracts/pull/28
https://github.com/DistributedCollective/Sovryn-smart-contracts/pull/42
https://github.com/DistributedCollective/Sovryn-smart-contracts/pull/13

4. loanId creation refactoring

Sovryn modified the way the ​loanId is calculated when a new loan is opened. A per user
nonce is used instead of the block timestamp, in addition to the lender, borrower and
loanParamsLocal.id.
Coinspect reviewed this change and concluded that making the ​loanId deterministic does
not represent a risk to the platform’s security.

This change is introduced in the following pull request:

● https://github.com/DistributedCollective/Sovryn-smart-contracts/pull/24

5. Removal of hardcoded addresses

Sovryn moved WETH and the protocol token addresses from ​Constants.sol to ​State.sol​;
setters were added to the price feed contracts. The ​LoanToken constructor is now passed
the ​sovrynContractAddress and ​wbtcTokenAddress parameters which were previously
hard coded.

Coinspect verified that only the contract owner is able to access the new configuration
setters.

This change is implemented in the following pull request:

● https://github.com/DistributedCollective/Sovryn-smart-contracts/pull/12

6. Changed the rollover reward

The ​GasTokenUser contract was removed together with all the existing gas rebate logic. The
loan rollover reward which was before based on the transaction gas cost is now replaced
with the following calculation instead:

uint256 ​ ​public ​ rolloverBaseReward = ​16800000000000 ​;

// Rollover transaction costs around 0.0000168 rBTC, it is denominated in wRBTC

uint256 ​ ​public ​ rolloverFlexFeePercent = ​0.1 ​ ​ether ​; ​// 0.1%

return rolloverBaseRewardInCollateralToken.mul(2) // baseFee

 .add(positionSizeInCollateralToken.mul(rolloverFlexFeePercent).div(10 ** 20));

 // flexFee = 0.1% of position size

Note the new ​RewardHelper contract relies on the ​priceFeeds oracle contract in order to
calculate the reward in the corresponding collateral token.

This change is introduced by the following pull request:

● https://github.com/DistributedCollective/Sovryn-smart-contracts/pull/31

7. Lowered the minimum utilization rate on interest calculation

Previously, a minimum utilization rate of 80% was hardcoded and could not be adjusted as
needed, now it can be parametrized together with ​targetLevel​, ​kinkLevel and the
maxScaleRate parameters using the new function ​setDemandCurve​. The interest calculation
logic in function ​_nextBorrowInterestRate2 ​was updated to use the parameterized values
instead of hardcoded ones. This change was merged from the bZx repository.

This change is introduced by the following pull requests:

● https://github.com/DistributedCollective/Sovryn-smart-contracts/pull/34

© 2020 Coinspect 7

https://github.com/DistributedCollective/Sovryn-smart-contracts/pull/24
https://github.com/DistributedCollective/Sovryn-smart-contracts/pull/12
https://github.com/DistributedCollective/Sovryn-smart-contracts/pull/31
https://github.com/DistributedCollective/Sovryn-smart-contracts/pull/34

● https://github.com/DistributedCollective/Sovryn-smart-contracts/pull/44

8. Introduced a multisig owner

In order to replace the single address that owned all the Sovryn protocol contracts, a 2of3
multisig wallet was introduced. This multisig is intended to be used while the governance
model is being developed. The deployment script was modified to transfer ownership of the
Sovryn protocol contract to the multisig.

This change was introduced by the following pull request:

● https://github.com/DistributedCollective/Sovryn-smart-contracts/pull/35

9. Split up the factory function which deploys the liquidity pool v2
converter

The function ​newConverter in the ​ConverterRegistry contract needed to be split in order to
be able to deploy it on RSK because of the network's gas limit of 6.8M. A new function,
setupConverter​ was added to complete the deployment.

PR8 correctly fixed an issue found by a previous security audit performed by a different team
by checking the user finishing the contract deployment is the same that initiated it.

This change was introduced by the following pull requests:

● https://github.com/DistributedCollective/oracle-based-amm/pull/1
● https://github.com/DistributedCollective/oracle-based-amm/pull/8

10. Use MoC as oracle instead of Chainlink

Sovryn modified the AMM to utilize the Money on Chain oracle infrastructure running in the
RSK network instead of Chainlink as the source for off-chain price feeds.

Even though the change is straightforward implementation-wise, Coinspect observed the
latestTimestamp function does not return a value obtained from the oracle as expected,
but the block timestamp. This behavior prevents the oracle consumer from using this
information in order to make a decision regarding the validity of the off-chain data and is fully
documented in ​Price feed oracle fake timestamp​.

Additionally, Coinspect verified only the contract owner can set the MoC oracle contract
address.

This change was introduced by the following pull request:
● https://github.com/DistributedCollective/oracle-based-amm/pull/4

11. Wrapped RBTC and RBTCWrapperProxy

Sovryn added the new ​RBTCWrapperProxy​ and ​WRBTC​ contracts. The wrapped RBTC
contract gives depositors one WRBTC token per each RBTC sent to it. In the same way, it
allows withdrawing one RBTC for each WRBTC token burned.

The ​RBTCWrapperProxy​ enables users to:

1. Add liquidity to the pools reserves in exchange for pool tokens
2. Remove liquidity

© 2020 Coinspect 8

https://github.com/DistributedCollective/Sovryn-smart-contracts/pull/44
https://github.com/DistributedCollective/Sovryn-smart-contracts/pull/35
https://github.com/DistributedCollective/oracle-based-amm/pull/1
https://github.com/DistributedCollective/oracle-based-amm/pull/8
https://github.com/DistributedCollective/oracle-based-amm/pull/4

3. Convert their tokens

The ​RBTCWrapperProxy​ receives RBTC from the user and wraps it WRBTC tokens before
depositing it into the liquidity pool; then it sends the pool tokens back to the user.

The ​convertByPath​ function can:

1. Receive RBTC as value, which gets wrapped and swapped
2. Convert any token to WRBTC

This change was introduced by the following pull request:

● https://github.com/DistributedCollective/oracle-based-amm/pull/10

© 2020 Coinspect 9

https://github.com/DistributedCollective/oracle-based-amm/pull/10

Phase 3: General review of the lending, trading and borrowing processes

During this phase of the engagement, Coinspect reviewed how all Sovryn components
integrate, reviewed the deployment procedures, and tested user-Sovryn interactions.
This process focused on the following contracts and entry points as requested by the Sovryn
team:

1. LoanTokenLogicStandard.sol
a. marginTrade
b. borrow
c. mint
d. burn

2. LoanTokenLogicWrbtc.sol:
a. mintWithBTC
b. burnToBTC

3. LoanClosing.sol
a. closeWithSwap
b. closeWithDeposit
c. liquidate
d. rollover

While reviewing the deployment and setup process, Coinspect auditors observed the
contract owning the protocol has unlimited powers including:

1. Upgrading all Sovryn protocol smart contracts.
2. Withdrawing all funds.
3. Pausing/unpausing the protocol.
4. Changing all protocol parameters (interest curve, AMM connector, oracles, etc).

Coinspect recommends splitting administrative roles in order to minimize damage in case
one role is compromised.

The tests included in the ​https://github.com/DistributedCollective/Sovryn-smart-contracts
repository were reviewed. These tests have been developed using the ​brownie​ framework,
and are currently being migrated to the ​truffle​ framework. Besides some sporadic errors
related to the ​brownie​ framework, all tests included pass.​ ​The tests are intended to verify
the basic functionality of the protocol is correct, and no complex scenarios are included. For
example: all tests consist of one lender and one borrower.
Coinspect auditors were unable to obtain a valid coverage report, when coverage is enabled
most tests fail. ​The Sovryn team is aware of this fact and this is one of the reasons why the
brownie framework is being abandoned. It is important that the ability to evaluate the tests
coverage is recovered in order to obtain a clear view of what execution paths are being
exercised and which tests need to be improved or created.

Coinspect auditors found not all the platform’s entry points enforce the same security limits
for maximum transaction amount and slippage. This is detailed in ​Transaction size and
slippage limits not enforced for external swaps​.

Regarding slippage, there is a hardcoded slippage limit of 5%, enforced by the function
checkPriceDisagreement​ in the ​PriceFeeds​ contract, for all borrowing, lending and
margin trading originated swaps performed in the Sovryn exchange:

uint256​ ​public​ maxDisagreement = ​5​ * ​10​**​18​;
// % disagreement between swap rate and reference rate

© 2020 Coinspect 10

https://github.com/DistributedCollective/Sovryn-smart-contracts

This means all operations in the Sovryn exchange are subject to losing up to 5% from the
internal swap performed.

It is worth noting no attempt at limiting swaps was observed in the oracle-based AMM project
either. However, the size of the pools can be restricted by the contract owner, and this
maximum liquidity pool size is enforced by the ​addLiquidity​ function. This limit is not
hardcoded though, and depends on the deployment and configuration actions performed by
the contract owner for each pool. ​By default, new pools are created with unlimited staked
balance.

© 2020 Coinspect 11

5. Conclusions and Recommendations

In respect to the smart contracts reviewed, the changes introduced to the forked projects did
not introduce any security vulnerabilities and were well documented. The oracle integration
did weaken the platform overall security by voiding the last update timestamp checks that
were in place.

The following list sums up the most important recommendations from this audit:

1. Continue Improving the oracle integration as this could be seen as the weakest link in
the platform.

2. Add tests for oracle’s worst case scenarios.
3. Improve end to end testing to include complex scenarios (e.g., chain reorganizations,

network congestion, multiple lenders and borrowers, trade operations with sizes
around maximum limits, slippage).

4. Fix testing coverage reporting.
5. Create administrative roles with different sets of privileges.
6. Clearly document the upgradable nature of the protocol and the operations

accessible by the contract’s owners.
7. Constantly monitor vulnerabilities reported in the upstream projects and backport the

changes as needed.

© 2020 Coinspect 12

6. Summary of Findings

© 2020 Coinspect 13

ID Description Risk Fixed
SVN-001 Price feed oracle fake timestamp High ✔

SVN-002 WRBTC ERC20 approve front running Low ✘

SVN-003 internalSwap function name is misleading Info ✘

SVN-004 Infinite transfer allowance Low ✘

SVN-010 Missing or numeric non descriptive error messages Info ✘

SVN-011 Transaction size and slippage limits not enforced for
external swaps

Low ✘

SVN-012 Leftover code from debugging Info ✔

SVN-013 Function _totalDeposit doesn’t revert when the precision is 0 Low ✔

7. Remediations

During December 2020 Coinspect verified the findings that Sovryn decided to address had
been correctly fixed.

The following table lists the findings that were fixed and the corresponding pull requests:

SVN-001 has been mitigated by adding a new price source, an oracle contract provided by
the RSK team, for the WRBTC price. This oracle in the Sovryn Protocol will be used to check
price divergence between this new feed and the exchange rate obtained from the AMM
component. This change will not affect transactions performed directly in the AMM.
Additionally, code in the AMM repository was modified to use the latest publication block
number (that will be provided by the MoC oracle in the future) to calculate the latest oracle
update timestamp. This fix is not currently deployed and has only been tested using a mock
contract. Coinspect has not reviewed the recently introduced RSK oracle infrastructure.

Regarding SVN-011, the vulnerable contract has not been deployed so Sovryn is currently
not exposed to any risk related to this finding. The Sovryn team will implement a price
divergente check in the contract before it is deployed. The limit check is considered
unnecessary for this contract as funds are never stored in it.

The Sovryn team decided not to fix SVN-002 and is considering if SVN-003 and SVN-004
will be fixed; these are all low risk findings.

© 2020 Coinspect 14

ID Description Pull Request

SVN-001 Price feed oracle fake timestamp PR #76
PR #15

SVN-012 Leftover code from debugging PR #​84

SVN-013 Function _totalDeposit doesn’t revert when the precision is 0

PR #85

https://github.com/DistributedCollective/Sovryn-smart-contracts/pull/76
https://github.com/DistributedCollective/oracle-based-amm/pull/15
https://github.com/DistributedCollective/Sovryn-smart-contracts/pull/84
https://github.com/DistributedCollective/Sovryn-smart-contracts/pull/85

8. Findings

Description

Sovryn utilizes the ​MoC​ oracles platform for its price feeds.

First, Coinspect auditors observed that, in the oracle-based AMM component, the function
latestTimestamp in the ​MoCBTCToUSDOracle contract fakes the timestamp of the latest
price update to the block timestamp:

 ​/**
 * ​@dev​ returns the USD/BTC update time.
 *

 * ​@return​ always returns current block's timestamp
 */

 ​function​ ​latestTimestamp​() ​external​ ​view​ ​returns​ (​uint256​) {
 ​return​ ​now​; ​// MoC oracle doesn't return update timestamp
 }

As the code comment suggests, the current version of the MoC oracle medianizer contract
does not provide the last update timestamp.

This results in the ​lastUpdateTime and ​lastRateAndUpdateTime functions in
PriceOracle.sol​ (which are used internally by the AMM) being useless as well:

 ​/**

* ​@dev returns the timestamp of the last price update the rates are returned as

numerator (token1) and denominator

 * (token2) for accuracy

 *

 * ​@return​ timestamp
 */

 ​function​ ​lastUpdateTime​()
 ​public
 ​view
 ​returns​ (​uint256​) {
 ​// returns the oldest timestamp between the two
 ​uint256​ timestampA = tokenAOracle.​latestTimestamp​();
 ​uint256​ timestampB = tokenBOracle.​latestTimestamp​();

 ​return​ timestampA < timestampB ? timestampA : timestampB;
 }

Because of this, the AMM will always depend on the rate returned by the MoC oracle for weight
rebalancing purposes. The original AMM behavior falls back to the AMM internal rate if the price
has not been updated recently.

© 2020 Coinspect 15

SVN-001 Price feed oracle fake timestamp

Total Risk
High

Fixed
✔

Impact
High

Likelihood

High

Location
MocBTCToUSDOracle​.sol

https://github.com/money-on-chain

Secondly, the auditors observed, on the Sovryn Core Protocol component side, the oracle
consumer contract ​PriceFeedsMoC.sol ​retrieves the latest answer value and the ​hasValue
boolean flag (which allows the oracle to signal the consumer that the provided value is not
considered valid) from the MoC oracle ​Medianizer​ contract:

 ​function​ ​latestAnswer​()
 ​external
 ​view
 ​returns​ (​uint256​)
 {

 (​bytes32​ value, ​bool​ hasValue) = ​Medianizer​(mocOracleAddress).​peek​();
 ​require​(hasValue, ​"Doesn't have a value"​);
 ​return​ ​uint256​(value);
 }

This is how ​_queryRate​ is implemented in ​PriceFeeds.sol​:

 ​function​ ​_queryRate​(
 ​address​ sourceToken,
 ​address​ destToken)
 ​internal
 ​view
 ​returns​ (​uint256​ rate, ​uint256​ precision)
 {

 ​require​(!globalPricingPaused, ​"pricing is paused"​);

 ​if​ (sourceToken != destToken) {
 ​uint256​ sourceRate;
 ​if​ (sourceToken != ​address​(baseToken) && sourceToken != protocolTokenAddress) {
 IPriceFeedsExt _sourceFeed = pricesFeeds[sourceToken];

 ​require​(​address​(_sourceFeed) != ​address​(​0​), ​"unsupported src feed"​);
 sourceRate = _sourceFeed.​latestAnswer​();
 ​require​(sourceRate != ​0​ && (sourceRate >> ​128​) == ​0​, ​"price error"​);

As a consequence of the above observations, if the MoC oracle fails to be updated during a
period of time (and the ​hasValue flag is not set to false), Sovryn components will continue
operating with a potentially outdated exchange rate, which would result in liquidity being
drained from the AMM pools for example. The Sovryn AMM thus deposits all trust in the
oracle implementation ability to decide if the information provided is valid or not.

A few potential reasons for MoC oracles to end up with outdated values are:

● Network congestion scenario (natural or attacker induced) where the update
transactions fail to get mined.

● Oracle update agents running out of gas
● Oracle updates not fast enough to cope with rapid changes in price variations,
● System administration issues.

A full analysis of the MoC oracle implementation and infrastructure was beyond the scope of
this audit.

Recommendations

Coinspect recommends the Sovryn platform improves their integration of off-chain oracles:
1. Request MoC to add last update timestamp information to their oracles. Use this

information to decide if the obtained value should be trusted or not.
2. Consider adding redundancy for price feeds
3. Research latest advances in blockchain oracle technology (such as the new Maker

Oracle Security Modules)

© 2020 Coinspect 16

Description

The wrapped RBTC token contract suffers from a well known ERC20 standard security
vulnerability that takes place when the token transfer allowance is modified: an attacker can
front run the approve transaction to transfer the original allowed amount of tokens (N) before
the allowance is changed, and then, after the approve transaction takes place, the attacker
can again transfer more tokens (M), obtaining as a result more tokens than the toker owner
intended (N+M instead of M) [1].

Recommendation

Add the functions ​increaseApproval​ and ​decreaseApproval​ to the WRBTC contract,
using as a template the implementations in the OpenZeppelin library [2].

References

[1]​ ​https://github.com/ethereum/EIPs/issues/20#issue comment-263524729
[2] ​https://github.com/OpenZeppelin/zeppelin-solidity/blob/master/contracts/token/StandardToken.sol#L70

© 2020 Coinspect 17

SVN-002 WRBTC ERC20 approve front running

Total Risk
Low

Fixed
✘

Impact
Medium

Likelihood

Low

Location
rbtcwrapperproxy/WRBTC.sol

https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
https://github.com/OpenZeppelin/zeppelin-solidity/blob/master/contracts/token/StandardToken.sol#L70

Description

The only state changing function in the ​SwapsImplSovrynSwap​ contract is ​internalSwap​:

function​ ​internalSwap​(
 ​address​ sourceTokenAddress,
 ​address​ destTokenAddress,
 ​address​ receiverAddress,
 ​address​ returnToSenderAddress,
 ​uint256​ minSourceTokenAmount,
 ​uint256​ maxSourceTokenAmount,
 ​uint256​ requiredDestTokenAmount)
 ​public
 ​returns​ (​uint256​ destTokenAmountReceived, ​uint256​ sourceTokenAmountUsed)

Using ​internal ​in a public function name is confusing, and could result in a developer
incorrectly assuming the function can not be accessed from outside the contract, leading to
security vulnerability.

The same happens with the ​internalExpectedRate​ function, though this function does not
modify state.

 ​function​ ​internalExpectedRate​(
 ​address​ sourceTokenAddress,
 ​address​ destTokenAddress,
 ​uint256​ sourceTokenAmount)
 ​public
 ​view
 ​returns​ (​uint256​)
 {

Recommendation

Even though this issue does not represent a security risk right now, Coinspect recommends
modifying the functions name to improve code readability and prevent future mistakes.

© 2020 Coinspect 18

SVN-003 internalSwap function name is misleading

Total Risk
Info

Fixed
✘

Impact
None

Likelihood

None

Location
swaps/connectors/SwapsImplSovrynSwap.sol

Description

The ​SwapsImplSovrynSwap​ contract allows the oracle-based AMM component to transfer
unlimited amounts of its tokens. This allowance is never revoked. This behaviour was
inherited from the original Kyber connector.

The function ​allowTransfer​ is called by ​internalSwap​ everytime a token swap is
performed:

 ​/**
 * check is the existing allowance suffices to transfer the needed amount of tokens.

 * if not, allows the transfer of an arbitrary amount of tokens.

 * ​@param​ ​tokenAmount​ the amount to transfer
 * ​@param​ ​tokenAddress​ the address of the token to transfer
 * ​@param​ ​sovrynSwapNetwork​ the address of the sovrynSwap network contract.
 * */

 ​function​ ​allowTransfer​(
 ​uint256​ tokenAmount,
 ​address​ tokenAddress,
 ​address​ sovrynSwapNetwork)
 ​internal
 {

 ​uint256​ tempAllowance = ​IERC20​(tokenAddress).​allowance​(​address​(​this​),
sovrynSwapNetwork);

 ​if​ (tempAllowance < tokenAmount) {
 ​IERC20​(tokenAddress).​safeApprove​(
 sovrynSwapNetwork,

 ​uint256(-1)
);

 }

 }

An infinite allowance implies an implicit trust in the oracle-based AMM component, which is
not necessary, and has potential for abuse.

Recommendation

Coinspect suggests approving only the amount required for the current swap in order to
contain the impact of a potential vulnerability in the oracle-based AMM component.

© 2020 Coinspect 19

SVN-004 Infinite transfer allowance

Total Risk
Low

Fixed
✘

Impact
Medium

Likelihood

Low

Location
swaps/connectors/SwapsImplSovrynSwap.sol

Description

On several occasions, the error messages returned to users are missing, or they are
numeric and not self explanatory. This can be seen in ​require​ and ​_safeTransfer​ calls,
these a few examples in ​LoanTokenLogicStandard.sol​:

require​(_loanTokenAddress != collateralTokenAddress, ​"26"​);

require​ (sentAmounts[​1​] != ​0​, ​"25"​);

_safeTransfer​(_loanTokenAddress, receiver, withdrawalAmount, ​""​);

_safeTransferFrom​(collateralTokenAddress, ​msg​.sender, sovrynContractAddress,
collateralTokenSent, ​"28-b"​);

These errors strings are hard to understand from the user point of view and/or while reading
the source code.

Recommendations

Replace the numeric error messages with easier to understand string constants. Also, it is
important to include the reason string in tests that verify a revert, in order to make sure that
the transaction is reverted by the expected reason and not because of some other problem.

© 2020 Coinspect 20

SVN-010 Missing or numeric non descriptive error messages

Total Risk
Info

Fixed
✘

Impact
None

Likelihood

None

Location
connectors/loantoken/*.sol

Description

While operations performed though the Sovryn exchange are limited in size and protected
from arbitrary slippage conditions, the user accessible ​SwapsExternal​ contract permits
unbounded swaps with no slippage checks enforced.

The ​swapExternal​ public function in the ​SwapsExternal​ smart contract can be invoked by
anybody (without need for having an open position), as it name indicates, to swap tokens.
This function relies on the internal function ​_swapsCall​ located in the ​SwapsUser​ contract,
which is the function used by the ​_loanSwap​ function in the same contract.

_loanSwap​ is the function used by all the trading/lending token logic (e.g.,
LoanClosings.sol​,​ LoanMaintenance.sol ​and​ LoanOpenings.sol​) and enforces limits
for:

1. Maximum amount of source token swapped: 50 RBTC as defined in ​State.sol:

uint256​ ​public​ maxSwapSize = ​50​ ​ether​;
// maximum support swap size in BTC

2. Maximum price slippage: 5% as defined in ​State.sol​:

uint256​ ​public​ maxDisagreement = ​5​ * ​10​**​18​;
// % disagreement between swap rate and reference rate

This is the relevant code in ​_loanSwap​:

 ​function​ ​_loanSwap​(
 ​bytes32​ loanId,
 ​address​ sourceToken,
 ​address​ destToken,
 ​address​ user,
 ​uint256​ minSourceTokenAmount,
 ​uint256​ maxSourceTokenAmount,
 ​uint256​ requiredDestTokenAmount,
 ​bool​ bypassFee,
 ​bytes​ ​memory​ loanDataBytes)
 ​internal
 ​returns​ (​uint256​ destTokenAmountReceived, ​uint256​ sourceTokenAmountUsed, ​uint256
sourceToDestSwapRate)
 {
 (destTokenAmountReceived, sourceTokenAmountUsed) = ​_swapsCall​(
 [
 sourceToken,
 destToken,
 ​address​(​this​), ​// receiver
 ​address​(​this​), ​// returnToSender
 user
],
 [

© 2020 Coinspect 21

SVN-011 Transaction size and slippage limits not enforced for external swaps

Total Risk
Low

Fixed
✘

Impact
Medium

Likelihood

Low

Location
SwapsExternal.sol
SwapsImplSovrynSwap.sol

 minSourceTokenAmount,
 maxSourceTokenAmount,
 requiredDestTokenAmount
],
 loanId,
 bypassFee,
 loanDataBytes
);

 ​// will revert if swap size too large
 ​_checkSwapSize​(sourceToken, sourceTokenAmountUsed);

 ​// will revert if disagreement found
 sourceToDestSwapRate = ​IPriceFeeds​(priceFeeds).​checkPriceDisagreement​(
 sourceToken,
 destToken,
 sourceTokenAmountUsed,
 destTokenAmountReceived,
 maxDisagreement
);

However, the ​swapExternal​ function implementation does not perform any of those checks
before calling the AMM contract (via a ​swapImpl.delegatecall ​to the i​nternalSwap
function in the AMM connector located in the ​SwapsImplSovrynSwap​ contract) for the swap
in the same ​_swapsCall​ used above:

 ​function​ ​swapExternal​(
 ​address​ sourceToken,
 ​address​ destToken,
 ​address​ receiver,
 ​address​ returnToSender,
 ​uint256​ sourceTokenAmount,
 ​uint256​ requiredDestTokenAmount,
 ​bytes​ calldata swapData)
 ​external
 ​payable
 nonReentrant
 ​returns​ (​uint256​ destTokenAmountReceived, ​uint256​ sourceTokenAmountUsed)
 {
 ​require​(sourceTokenAmount != ​0​, ​"sourceTokenAmount == 0"​);

 ​if​ (​msg​.value != ​0​) {
 ​if​ (sourceToken == ​address​(​0​)) {
 sourceToken = ​address​(wrbtcToken);
 }
 ​require​(sourceToken == ​address​(wrbtcToken), ​"sourceToken mismatch"​);
 ​require​(​msg​.value == sourceTokenAmount, ​"sourceTokenAmount mismatch"​);
 wrbtcToken.deposit.​value​(sourceTokenAmount)();
 } ​else​ {
 ​IERC20​(sourceToken).​safeTransferFrom​(
 ​msg​.sender,
 ​address​(​this​),
 sourceTokenAmount
);
 }

 ​(destTokenAmountReceived, sourceTokenAmountUsed) = ​_swapsCall​(
 [
 sourceToken,
 destToken,
 receiver,
 returnToSender,
 ​msg​.sender ​// user
],
 [
 sourceTokenAmount, ​// minSourceTokenAmount
 sourceTokenAmount, ​// maxSourceTokenAmount
 requiredDestTokenAmount

© 2020 Coinspect 22

],
 ​0​, ​// loanId (not tied to a specific loan)
 ​false​, ​// bypassFee
 swapData
);

Coinspect found the public function i​nternalSwap​ function in the AMM connector located in
the ​SwapsImplSovrynSwap​ contract also allows bypassing the trade/borrow related swaps
security limits.

As a result, ​the protection mechanisms put in place to limit transaction sizes and slippage in
the Sovryn platform are not consistent among all user accessible interfaces. ​If a vulnerability
is discovered in the platform, this no-limits public function could be abused to exploit it,
bypassing the limits imposed by the other functions.

For a user to be exposed to this vulnerability, he would need to be tricked into using the
unprotected function instead of the regular mechanism exposed by the dApp frontend.

Status

The Sovryn team explained that this issue is mitigated by the following reasons:
1. This contract is not currently deployed in mainnet
2. Limits are not considered necessary because the contract does not store funds

However, the price divergence check will be added to the contract before its deployment.

Recommendations

In order to bring consistency to the whole Sovryn platform protection mechanism, Coinspect
recommends mirroring the checks in place in the ​_loanSwap​ function to the ​swapExternal
and i​nternalSwap​ functions (or moving all checks to the i​nternalSwap ​function if that is the
only entry point to the AMM).

If the external swap functionality needs to remain unlimited for some reason, Coinspect
suggests clearly documenting the different limits imposed by each component to improve
transparency in that respect.

© 2020 Coinspect 23

Description

The function ​_updateCheckpoints​ emits the ​Debug​ event:

 emit Debug(
 slot,
 _currentProfit,
 _currentPrice
);

Recommendations

This looks like a leftover from a debug session, and it was probably not intended to commit it
to the git repository. It is recommended to remove the event.

© 2020 Coinspect 24

SVN-012 Leftover code from debugging

Total Risk
Info

Fixed
✔

Impact
None

Likelihood

None

Location
connectors/loantoken/LoanTokenLogicStandard.sol

Description

The function ​_totalDeposit​ differs in behavior from the original in bZx in that it doesn’t
revert when ​sourceToDestPrecision​ is 0:

function _totalDeposit(
 address collateralTokenAddress,
 uint256 collateralTokenSent,
 uint256 loanTokenSent)
 internal
 view
 returns (uint256 totalDeposit)
{
 totalDeposit = loanTokenSent;
 if (collateralTokenSent != 0) {
 (uint256 sourceToDestRate, uint256 sourceToDestPrecision) =
FeedsLike(ProtocolLike(sovrynContractAddress).priceFeeds()).queryRate(
 collateralTokenAddress,
 loanTokenAddress
);
 ​if (sourceToDestPrecision != 0)​ {
 totalDeposit = collateralTokenSent
 .mul(sourceToDestRate)
 .div(sourceToDestPrecision)
 .add(totalDeposit);
 }
 }
}

This condition should never happen, but if it happens for any reason it would be safer to
revert instead of ignoring it.

Recommendations

Remove the ​if​ statement and let it revert in ​div​ if ​sourceToDestPrecision​ is 0.

© 2020 Coinspect 25

SVN-013 Function _totalDeposit doesn’t revert when the precision is 0

Total Risk
Low

Fixed
✔

Impact
Low

Likelihood

None

Location
connectors/loantoken/LoanTokenLogicStandard.sol

9. Disclaimer

The present security audit does not cover the endpoint systems and wallets that
communicate with the contracts, nor the general operational security of the company whose
contracts have been audited. This document should not be read as investment advice or an
offering of tokens.

© 2020 Coinspect 26

